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By Y. B. Zeldovich

UNMIXED GASES*

INTRODUCTION

The chemical reaction of two substances
panied by the formation of new substances of
and the liberation of heat is considered.

(fuel and oxygen) accom-
the products-;f combustion

A steady process with a continuous supply of the initial substances
and a removal of the products is assumed. The particular feature of the
case under consideration is that the fuel and the oxygen or air are
individually supplied, that is, they are not initially mixed. It follows
that even in the case where the constant of the reaction velocity of the
oxygen with the fuel is large the intensity of combustion does not exceed
a certain limit, which depends on the mixing rate of the fuel and the
oxygen.

The combustion itself essentially changes the distribution of the
concentrations as compared with the distribution of the concentrations
in the mixing of the same gases without combustion.

It has long been established (as far back as Faraday if not earlier)
as a fundamental qualitative characteristic of combustion that the sur-
face of the flame separates a region in which there is oxygen and no fuel
(the oxidizing region) froma region in which there is no oxygen but only
fuel.

Burke and Schumann (reference 1) considered the shape of the flame
surface in a very particular case of combustion in parallel concentrated
laminar flows of the fuel and oxygen or air. They did not consider in
detail the phenomena occurring in the flame region.

The most complete recent work is that of Shvab (reference 2), which
appeared at Leningrad in 1940. In this work, a detailed study is made
of a turbulent flame torchj the study considers both the case of the
supply of a pure gas fuel and the case of the supply of a gas mixture
with insufficient amount of air. Shvab found relations between the

*“K Teorii Gorenia Neperemeshannykh Gazov.” Zhurnal Tekhnicheskoi
Fiziki, Vol. 19, No. 10, Oct. 1949, pp. 1199-1210.
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fields of concentration of the gas, the oxygen, and the product of com-
bustion and the temperature and the velocity field of the gas. A num-
ber of the results obtained by Shvab (in particular, the constancy of
the concentration of the products of combustion’ and of the temperature)
on the surface of the flame are presented} for completeness, in the pre-
sent article.

The discussion given of the reaction zone and the kinetics of the
chemical reaction (section 5) is new.

For laminar combustion, it is possible on the basis of this investi-
gation to proceed further and explain the limits of the possible intensity
of combustion, depending on the fact that for a large rate of fuel and
oxygen supply to the flame surface the velocity of the chemical reaction
is not sufficient.

1. GENERAL EQUATIONS

A region is considered in which the gas moves with velocity %, the
density of the gas is p, the concentration by weight of the component
of interest is a, the coefficient of diffusion is D, the heat conductiv-
ity is ~, the temperature conductivity is A/ap = IC, and the temperature
is Tj all these magnitudes that depend on the coordinates are variable.
The flow of component a is given by the equation

la= ‘- @gradapa w (1)

The vector ;a gives the direction of the flow and its magnitude

in grams per square centimeter in seconds at a given point. The general
equation of diffusion has the form

+
div qa = L(a) = -2 (pa) +Fa (2)

The left side of equation (2) gives the divergence of the flow,
that is, the difference between the amount carried away by the flow and
the amount of substance supplied by the flow referred to unit volume, and
the right side gives the change in the amount of substance a in unit
volume ~(pa)~t and the amount of substance a transformed in unit
volume as a result of the chemical reaction.
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The differential operator is denoted by the symbol L(a)

()L(a) =’div pa% ‘.MV (pi)grad a) ‘“ ‘

In steady flow,

-&(pa) =0

>=

()
-div p?=o

at
}

L(a) = p%

For a steady process,

grad a - div (PD grad a)

L(a) = Fa

3

(3)

(4)

(5)

(6)

The equation of heat conductivity has the analogous form (neglect-
ing the heat transferred by radiation)

~T= pTc?- h grad T = pTc? - Mcp grad T (7)

where c is the specific heat, which is assumed constant. Then

div ~T a (PT) + Q=cL(T)=-c X

where Q is the volume rate of the heat trans;er.

In a steady process,

(8)

L(T) =:
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If the coefficients of diffusion of the initial substances a and
b and of the products of combustion g and h and the coefficient of
heat conductivity are all equal to each other,

Da = ~=Dg=Dh=X=D (lo)

the operators L(a), L(b), .... L(T) are all the same in the formulas of
the type of equation (6) for the different substances and formula (9) for
the temperatures.

In the chemical reaction of combustion, the quantities of the initial
substances entering the reaction, the quantities of the transformed pro-
ducts of
strictly
reaction
it

with the

combustion, and the quantity of heat given out are in definite,
constant, relations to one another. With the volume rate of the
denoted by F, all the magnitudes can be expressed in terms of

Fa=-~

Fb=-;

F
‘g=~

Fh=~

QF-=—
cT.

(11)

aid of the constant mositive coefficients a...., T. The sires., –w
in equations (11) correspond to the fact that a and b are expended
and g, h, and the heat a%e given out in the reaction. The coefficients
u,..., T are put in the denominators for convenience in the further
discussion. Example:

a = CH4

b= 02

g = C02
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h= H20

.. ,,_
c = 0.’5cal/(gram)(°C)

heat of reaction 192,000 (cal~mole) CH4.

5

By expressing F as the expenditure of all substances entering
the reaction in grams per cubic centimeter per second, there are
obtained the values

a= 5

P = 1.25

Y= 1.82

7 = 2.22

T = 1/4800° = 2.o8 - 10-4(0C)-1

With the aid of these coefficients, all the differential equations
of diffusion of the different substances and the equations of heat con-
duction during the chemical reaction assume like form with equal L and
F in all formulas

L(aa) = - F

L(@b) = - F

L(yg) = F

L(qh) = F

L(TT) = F
1

It is yet impossible to conclude the similarity of the fields of all
the magnitudes a,..., T of interest, for the field of each magnitude
depends not only on the differential equation that it satisfies but also
on the boundary conditions.

The fuel gas is supplied through one pipe (I); correspondingly,
within the pipe

(12)

m,,—- ,-. .—-.. -.,. -.,- , —-. . . .. . .
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I. a = a.

}

b g=h=O= (13)

T’=
‘o

where a. is the concentration of the fuel in the gas to-be btined.

This gas may be diluted, for example, with nitrogen. Air is supplied
through the other pipe (II)

II. “ b = b.
a = g

}

=h=O

T = ‘o

(14)

where b. is the concentration of the oxygen in the air. In the com-
bustion of a torch in the free atmosphere, condition II refers not to
the air pipe but to the concentrations in the atmosphere at an infinite
distance from the torch.

At the surface of the pipe or a burner, the boundary conditions
consist of the fact that the flow of any substance through the material
surface is equal to zero} so that the component of the correspondent
vector normal to the surface is equal to zero. These conditions are the
same for all substances. The boundary conditions for the temperature
will be the same as the boundary conditions for a,..., h, if heat is not
abstracted from the torch, that is, if only heat-insulating and not heat-
emitting surfaces are considered or if, in general, the walls with the
temperature To are located only where the temperature of the gases is

equal to Tn.

These conditions are assumed satisfied so that the boundary condi-
tions for all substances and the temperatures at the walls are the same.

2. ANALYSIS OF EQUATIONS: EQUATION OF FLAME SURFACE

An analysis of the equations is now made. The principal difficulty
in the direct solution of the equations lies in the fact that the velocity
of the reaction F depends greatly on the required magnitudes a, b, and
T.

By subtracting the first equation from the second equation there is
obtained
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L(aa - ~b) = L(p) = O

where

}-~

(15)
,–. .,

p=a.a - ~b

with the boundary conditions

I) P=aao

II) p=- Pbo
}

(16)

Thus the difference in concentrations of the fuel and the oxygen,
taken with the corresponding stoichiometric coefficients, is subject to
the equation of diffusion in which the velocity of reaction F does not
enter. This equation was considered by Burke and Schumann for determin-
ing the shape of the flame on the assumption that the fuel can be con-
sidered as negative oxygen. If combustion rather than a slow reaction is
considered, the function F for simultaneous a~O, b#O is very
large. Because the total quantity of substance burning in unit time is
restricted by the amount of fuel supplied, the increase of F(a, b, T)
for given a, b, T shows that ac,tually the width of the reaction zone in
the flame, in which simultaneous a # O, b # O exists, decreases while
the magnitudes of a and b decrease.

In the limit for infinitely rapid reaction, a and b in the
reaction zone approach zero so that nowhere (except for an infinitely
narrow zone) can a and b simultaneously differ from zero. Thus in
the case of combustion, by finding the distribution of p in space from
the solution of linear equation (15) with conditions (16), the field of
a and the field of b are found:

The condition
flame. It iS

reaching this

p<o, a=O, b=-~
J

(17)

p=o also represents the equation of the surface of the
not difficult to show that the flow of the substance a
surface on one side and of the substance b reaching it on



—

8 NACA TM 1296

the other side are precisely in stoichiometric ratio. At the fl~e s~.-
face, p = a = b = O so that the convective parts of the flow paw, pbw,
and paw are identically equal to zero. Therefore on the surface

+
!la= pD grad a = ~

)

~ pD grad p

(17a)
+
qb=PDgradb=~ pD grad p

and the magnitude grad p has no singularity on the flame surface whe”re

P = O, for on this surface the value of F in the equation for a and
b is large but that in the equation for p is not.

The flame surface (p = O) was found by Burke and Schumann by inte-
grating equation (15) for the simplest case of concentrated flows of
fuel and air moving with equal velocity. Their results are in agreement
with experiment.

An attempt is made here to express the equations for the tempera-
tures and the products of combustion in terms of a and b.

By considering the equation for one definite product of combustion

L(yg) =F

and co~aring it with the equation for a and b

L(a.a)= -F

L(~b) = -F

it can be seen that F can be eliminated from the equation by various
methods. In order to obtain also the simplest boundary conditions, how-
ever, it is necessary to choose a new variable in an entirely definite
manner:

1(18)

1
Any combination z = n (?”g+ maa+ (1-m)Pb) where n and m are
any constants gives L = n ~-ml?-(1-m)fl S O. However, in order that

should have the same values for a = ~, b =0 and for a=O,
:= bo, it is necessary that nmaao = n(l-m)~bO = 1, which leads to
the given expression for r (equation (18)).

,,..-—,— ,,,,,..,-, ,,- ,,,,.,,,-,,- , , ,,,,,, ,. , , .,...-, ,.,,-,—., ,,,,..,-,-. ,, .,,,,,.,,, ,,,,,---- , .,
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It is then easy to show that

1

L(r) = O

I)
(19)

r=l

II) r = J1
3. DISTRIBUTION OF PRODUC~~ OF REACTION AND OF TEMPERATURE

From equation (18) and conditions (19), it is seen that in the
entire region r satisfies the equation of diffusion and of convective
transfer without sources or sinks (because the right side of the equa-
tion is equal to zero); r is so chosen that r = 1 in all flows
reaching the region considered both in the flow of the gas (I) and in
the flow of the air or atmosphere (II). It is evident that if in the
two intermixing flows some substance (r) is contained in the same
concentration, the same constant concentration will hold in the entire
region of mixing. Mathematically, this condition is expressed such
that r a 1 is the solution of equations (18) and (19). From this
solution the expression of g is found in terms of a and b

g.s?42 a. b. - abo - aob
r aao + Pbo

and entirely analogous e~”ressions for horT
replacing y by ~ or ~. The proposed problem

(20)

are obtained by
is thus solved.

In a rapid combustion when equations (17) are satisfied, on the
flame front (p = O, a = b = O)

a. b.
goon= *

Y -o + Bbo
(21)

This result has a very simple and clear physical meaning: The magnitudes

a. and b. characterize the concentrations of the active substances in

the burning gases. In order to obtain a stoichiometric mixture in
which 1 gram is to react, it is necessary to take l/a grams of the sub-
stance a and l/~ grams of the substance b; there is then obtained
l/y grams of the substance g. Because the substances a and b in
the initial gases are diluted, it is necessary to take l/aao of one
g?isand l/Pbo of the other. After combustion, a quantity l/T of the
substance g will be contained in the total quantity of the products of
combustion equal to

1111 ,,,,, ,.——,., ... , , ,. , ,, ..-., .. .... .
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1~

which will give the concentration gm satisfying equation (21).

In this way, for a rapid combustion of the unmixed gases in the
reaction zone there is obtained accurately the sane concentration of
the products of combustion as though the burning gases were mixed in
the stoichiometric ratio and the chemical reaction conducted without
any diffusion exchange.

In exactly the same manner, in the absence of the heat losses
by radiation and of the cooling surfaces in the flame and for equality
of the coefficient of temperature conductivity and diffusion it may be
shown that the temperature in the combustion zone of a diffused flame

!cOo = SE a. b. is identically equal to the temperature
T ~0 + Bbo

combustion constant pressure of the stoichiometric mixture
considered.

of the
i

of the gases

4. COMPARISON OF FLAME TEMPERATURE WITH TEST VALUES

The conclusion that the temperature of an unmixed flame is equal
to the temperature of combustion of the stoichiometric mixture is in
contradiction to test results. It is well known from daily laboratory
tests that in the combustion of a given illuminating gas in a Bunsen
burner with closed air intakes the temperature of the flame is lower
than in the case where the same”gas burns with the intakes le;t open,
so that a prepared mixture of gas and air reaches the flame.

This divergence from test results is explained not by an error in
the computation but by the fact that the initially imposed condition of
applicability of the cowutation~ which is that in the heat balance of
the laboratory burner the amount of heat given off by radiation must
not be neglected, was not satisfied.

For an equal quantity ,ofburning gas, that is, for an equal amount
of heat given out without the supply of air, the dimension of the flame

‘It is assumed here and in the following discussion that a stoichiometric
quantity of air is drawn in. It is possible to consider the case of an
insufficient quantity when two flame cones are formed, an inner (com-
pressible mixture) and an outer (complete burning in the surrounding air).
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is considerably greater than with the supply of air so that the radiating
surface is greater and the amount of chemical energy given out per unit

b.
surface is less. In addition, the luminosity of the flame without air
supply is greater on account of the occurrence in it of minute parti-cles
of carbon arising from the decomposition of the hydrocarbons of the
fuel. When air is Supplidj the carbon soot disappears. The presence
of soot in the flame of a mixed gas is entirely natural from the follow-
ing considerations: Consider point A in the steady-state region
(fig. 1), that is, within the flame surface. Letthispoint be near
the surface of the flame. In this case the temperature at point A
is high, the gas is already strongly diluted with the products of com-
bustion and with nitrogen, but there is no oxygen in it. Heating in
the absence of oxygen leads to the formation of soot particles.

In a flame of a mixture of gas and air, the gas is heated ahead of
the flame front, but this heating occurs in the presence of oxygen and
the particles of carbon molecules that might act as initial centers for
the formation of soot particles are all oxidized. As a result, the heat
radiation from the flame of the mixture is considerably lower than in
the flame of the unmixed gas, although the initial “ideal” theoretical
value of the combustion temperature in both cases is the sane. As has
already been shown, this theoretical value represents the temperature
that must prevail during combustion in the absence of losses by radiation
and side reactions and with full account taken of the conductive and
convective heat interchange of the flame with the gas and air.

Account of the conductive and convective heat interchange is
fundamentally required for this heat interchange is directly connected
with those processes that supply the fuel and the oxygen to the flame.
No matter in what ratio the available and supplied air and gas exist
when they are individually supplied, the fltie establishes itself in
such position that the fuel and the oxygen reach the surface in the
stoichiometric ratio. For equal coefficients of diffusion and tempera-
ture conductivity (particularly in turbulent motion, assuring such
equality), the concentration of the products of combustion and the
temperature of the flame correspond precisely to the combustion of a
stoichiometric mixture (for equal losses by radiation). Such is the
conclusion from the theory.

5. LIMIT OF COMBUSTION OF UN!?REMIXED GASES

The method described permits computing the position of the surface
of the flame for the supply of any amount of gas and air for any small
calorie content of the gas. This computation is based on the assumption
of a high rate of chemical reaction at the flame surface (and at the
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temperature of combustion) that leads to a small thickness of the zone
in which the chemical reaction proceeds and to the possibility of con-
sidering the flame as a geometrical surface.

It is evident that for an insufficiently large rate of chemical
react”ion a deviation from this picture is to be expected. By analogy
with other phenomena of combustion and explosion, it may be expected
that a decrease in the rate of reaction for otherwise equal conditions
effects at first only a certain quantitative change - a widening of the
zone of reaction. After the attainment of a certain critical value,
an extinction of the flame occurs, the combustion becoming impossible}
and instead of the flame there occurs a mixing of the cold gas and air
without any reaction. An attempt is made to consider the critical
conditions of extinction in the simplest schematized case.

In 1940, this author considered (reference 3) the conditions of
the possible combustion (flame propagation) in a prepared mixture of
gases. In this case the limit depended on the lowering of the tempera-
ture of combustion because of the heat transfer to the side walls of the
pipe and heat loss by radiation. The lowering of the temperature of
combustion in turn led to the decrease in the velocity of flame propa-
gation, that is, to the decrease in the amount of heat given out per
second. With a decrease in the velocity of the flame, the relative heat
losses increase and so forth. For this reason it was possible to write
down the critical condition of the possibility of combustion of a pre-
pared mixture such that the lowering of the temperature of combustion
because of the effects of the heat losses must not exceed a certain small

limit (RTc2/A, where A is the heat of activation of the combustion

reaction and Tc is the combustion temperature).

This theory of the effects of external heat losses is not applicable
to the combustion of unmixed gases. The lowering of the temperature of
combustion in this case does not lead to a change in the amount of gas
burning per unit surface of the flame, because the rate of combustion is
here determined exclusively by the rate of the diffused oxygen and fuel
supplied to the flame surface and not by the velocity of propagation
(depending on the rate of reaction) as was the case for aprepared
mixture.

The limit of combustion of unmixed gases is determined by the lower-
ing of the temperature that depends on the finite velocity of the chemical
reaction.

Consider the distribution of the concentrations and the teqerature
in the reaction zone. If the ra%e of reaction were infinite, the dis-
tribution would be given by figure 2. The dotted line shows the position
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of the zone in which a x O,
for computing the coordinate
flame ‘surface:’ If’the total
face in unit time is denoted
respectively equal to3

13

b=o. This line is taken as the origin
x, which is taken perpendicular to the

amount of substance reacting on unit sur-
by M, the diffusion flows a and b are

so that the distribution of the reacting
given by the formulas

With the
corresponding

where

}
(22)

M

“J

components near the zone is

\
x < () a.g --+-x) b=o

pDa.+p

\ (23)
MaX>Q a= Ob. ——
pDu+~x

J

aid of equations (20) and (21) rewritten for T, the
temperature distribution is obtained. In the general case

1

‘“Took-$-$)

Too
@ a. b.

‘~aao+~bo

(24)4

%ecause the neighborhood of the reaction zone is considered, o and D
in these formulas and those following must be taken
in the reaction zone, approximately at TW .

a. b.%ore accurately Too = ~ ~. + ~bo + To. In the

the initial temperature To is small in comparison

of combustion and shall be neglected throughout.

at the temperature

following discussion

with the temperature
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a and b in equations (23)

(T.Tm 1-—
~~Da!P

)

—— (-x)

1
X<o

( lMU~.~ml-———)bopDu+~x
X>o

(25)

The corresponding

Consider how
instantaneous.

curve is also shown in figure 2.

the curves vary in the case where the reaction is not

It is evident that for equal amount of substance burning per unit
surface M, the gradient of the concentration and the entire distri-
bution of a and b far from the zone do not change. The curves a
and b now cannott however, undergo a sharp break (corresponding to the
instantaneous reaction) at the origin of coordinates as in figure 2.
They will curve as is shown in figure 3, approaching zero asymptotically
in the region occupied by the second component. The dotted line on this
figure shows the distribution for the instantaneous reaction.

In order to find accurately the curve of the concentration distri-
bution (fig. 3), it is necessary to integrate the equations of diffusion
of the form of equations (12), substituting a definite expression for
the rate of chemical reaction; for example,

F = abKe-% (26)

Because F depends on at least the three magnitudes a, b, and T,
it is necessary to consider a system of three equations of the second
order. On account of the devices developed, it is possible first to
find p, connecting a and b, and then express T in terms of a and
b and thus reduce the problem to a single equation of the second order;
for example, for a in which F will be expressed in terms of a and
the known function p(x).

For present purposes, however, this method is too complicated and
the conclusions of interest can be obtained (with an accuracy up to an
unknown numerical factor) by the methods of dimensional analysis and the
theory of si@larity.
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The following effective magnitudes are introduced:
the zone xl, the temperature in the reaction zone Tl,>., ,
centrations al and bl. The total amount of

the entire zone is expressed in terms of these

E

M = alblKxle
-~

Everything is expressed on the right-hand

15

the width of
and the con-

substance reacting in

effective ~gnitudes:

(27)

side in terms of X7 .

In order to interconnect these terms, ,it is noted that the depende~ce
of a and b on x is given at the distances from the zone, which
are large in comparison with t“hewidth of the reaction zone xl. The

dependence is a linear one, that is, characterized by the given gradients
ba~x, ab/~x or by the ratios a/x, b/x (See equations (23)5). From
the dimensions, it is seen that the relation between al) bl~ and Xl

must be given by the ssme equations

al M P=—— xl
pDa+@

Ma
bl = ~flxl 1 (28)

The relation between Tl,

from which, on substitution of

al, and bl is given by equations (24),

equations (28),

where

is obtained.

(29)

5
The ratios a/x and b/x change little only at distances greater than
xl but less than the tirnensions of the flame. At distances comparable

with the flame dimensions, the convective terms in the diffusion equation
must not be neglected.

. .. ... -.— . . . .— .,.,.. -—....—. .—... .——.
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Substitution in equation (27) gives an equation connecting M and
xl:

qR:em[RTm:.ml)=]
‘= (W~)2 (pD)

E @fxlE
.—

~
~2 RTOO 3 e-~

~ Ke ‘1

J

*

(a+~)2 (pD)

(30)

In the second line of equation (3o), the magnitude in the emonent
is expanded in a series by tie method of-Frank-Kamenetskii (refer=nce 4).
The magnitude on the right side depending on xl has the form x3e-w

and therefore passes through a maximum for a definite critical value

-L L.L

The

the fact

reaction

‘cr =

significance of the

that for small xl,

zone is narrow, and

3RTO0

(J)ME

E

()

3 -—
a +-p RTOO

pD ~ ~ Ke
—+5
a.

(31)

(32)

maximum M as a function of xl lies in

the overlapping of

the concentrations
in it are small.

For small xl and given temperature Too>

little from Too} M-x13, and al- bl-xl *

well-known results for cold diffusion flames in

a and b IS small, the

of the reacting substances

the temperature T differs

~ correspondingtm

a high vacuum (reference 5).
For large xl, the concentrations of the reacting substances are large;

the temperature, however, is lowered, leading to a decrease in the total
amount of reacting substance.

On intensifying the combustion by increasing the supply of reacting
substances a and b to the zone, the cooling of the reaction zone is
simultaneously increased. Until the rate of reaction is sufficiently
large, xl is less than the maximum and the temperature is practically
not lowered. For a certain critical value Mcr, however (formula (32)),

a lowering of the temperature of the zone is obtained, leading to a
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further decrease in the rate of reaction and a further lowering of the
temperature. A breakoff of the combustion occurs and instead of the
combustion there is a mixing of the cold gases. The maximum possible
lowering ‘of the ‘teiiperature(before flame extinction) ic equal to

3RTm2/E. There is an interesting resemblance of the expression for

M Cr (equation (32)) to the expression for the amount of substance burn-

ing per unit time in the flame propagated for a previously prepared
stoichiometric mixture of a combustible “gaswith air, the burning of
which in the unmixed form was previously considered.

Following the work of Frank-Kamenetskii and the author there is
obtained for the propagation of a flame in a stoichiometric mixture
(reference 6) in the notation here assumed

M 2=
()

(@)2 ‘ RTOO3 6PDK7%
mix

()

P 3E
—+%
a. b.

(33)

which differs from equation (32) only by the factor 6c43/(a+ ~), which
has no significance because numerical multipliers were omitted in the
derivation of equation (32). This agreement is very interesting from
the fundamental point of view for it shows that the maximum intensity
of combustion of a mixture and unmixed gases, if the mixing is suffi-
ciently intensified, is of the same order.

In the theory of combustion of an explosive mixture, it has been
shown that the chemical reaction proceeds in the zone in which the con-
centration of the reacting gas (of the one that is insufficient in the
mixture or of both in the case of a stoichiometric mixture) is very
small, of the order of RToo/E of the initial concentration. As the

]“ computations showed, for the combustion of unmixed gases the concen-
trations of both reacting substances (fuel and o~gen) in the reaction\
zone are very small. These concentrations depend on the intensity of the

~
combustion; in contrast to an explosive mixture for which there is a

) characteristic magnitude of intensity of combustion (velocity of the

I
flame), the intensity of the combustion of the flame of unmixed gases M

~ depends on external conditions. For maximum possible M at the limit

~ of breakoff of the flame, however, the concentrations in the reaction

( zone do not exceed the order of magnitude of the fraction RToo/E of
I the concentrations in the stoichiometric mixture.

p The limit found for the intensity of combustion of unmixed
gases explains, at least qualitatively, the fact that in the flow
of a rapid stream out of a pipe the flame is entirely situated at
a certain distance from the exit section of the pipe so that at the
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exitj where the intermixing of the reacting substances is most intense,
the flame breaks away. The losses by radiation have not been taken into
account. In taking them into account, it is evidently necessary to sub-
stitute in equations (29) to (32) in place of the theoretical value
Too) computed from the specific heat, the maximum possible temperature

T’oo for instantaneous reaction With account taken of the radiation.

The temperature T’oo ‘s less ‘ban ’00 even for an infinitely thin

zone as Xl+o on account of the radiation of the heated gases on the

left and right of the reaction zone. The temperature T’oo is lowered

with the value of M because for small M less heat is given off and
the radiating zone is wider. For a lowering of M due to the decrease
in T’oo with radiation taken into account, there will also be a

decrease in Mcr (equation (32)) and for very small M there arises

the second lower limit of M, that is, the breaking off of the flame for
too small an intensity of the combustion. Finally, for a small calorific
value of the gas the upper and lower limits of M may coincide and the
combustion become entirely impossible. Qualitatively, the picture is

analogous to the more simple case of the exothermic reaction in a jet
with account taken of the heat transfer, a case considered by Zysin and
the author (reference 7).

In the present report, the practically important but more complicated
question of the limit of intensification of the turbulent combustion of
unmixed gases is not considered. The complexity of this problem is con-
nected with the fact that in the presence of turbulence connecting the
mean rate of reaction with the mean temperature is not justified. It is
here evidently necessary to determine experimentally the limits of the
possible conditions of combustion”.

With the aid of equations (12) with a definite form of the function
F (for example equation (26)), it is also possible to solve the important
interesting problem of the diffusion passage of the fuel through the
flame zone; as is shown in figwe 3, the concentration of the interpene-
trating reacting substances drops sharply in passing through the reaction
zone but does not become zero. Because the temperature and the rate of
reaction likewise drop on both sides of the reaction zonej the concentra-
tion of the fuel that has already reached a definite distance from the
flame in the oxidizing zone does not further vary. The method presented
is unsuitable for solving this problem} however, and it is necessary to
solve the equations as described in the text after equation (26).



Y
-- -..—....--...-———.

1/

NACA TM 1296

The distribution of the

CONCLUSIONS

concentrations of the products of combustion
and the temperature for the combustion of initially U-nmixed gases were
considered. It was shown that for the simplest assumptions these con-
centrations and the temperature at the flame surface are the sanieas for
the combustion of an initially prepared stoichiometric mixture of the
gases considered.

The possible limit of the intensification of the combustion of
unmixed gases, which depends on the finite rate of the chemical reaction,
was obtained. In order of magnitude, this limit is near the rate of
combustion of a stoichiometric mixture.

Translated by S. Reiss
National Advisory Comnittee
for Aeronautics.
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